Author Archives: cormac

Robert Boyle Summer School 2014

Last weekend saw the third Robert Boyle Summer School, an annual 3-day meeting in Lismore, Co, Waterford in honour of one of Ireland’s greatest scientists. Born in Lismore into an extremely wealthy family, Boyle  became one of the most important figures in the Scientific Revolution,  well-known for his scientific discoveries, his role in the rise of the Royal Society and his influence in promoting the role of the experiment in the ‘new philosophy’.

boyle

The Irish-born scientist and aristocrat Robert Boyle   

 

IMG_0902[1]

Lismore Castle, the birthplace of Robert Boyle

The summer school took place in the Heritage Centre in Lismore, the beautiful town that is the home of Lismore Castle where Boyle was born.  The talks covered a wide range of topics, from Boyle’s scientific legacy to the interplay of science and religion (like many figures of the scientific religion, Boyle was quite devout and extremely interested in the interface between science and religion). See here for the conference program.

This was the third such summer school, organised jointly by the CALMAST science outreach group at Waterford Institute of Technology  and the Lismore Heritage Centre. As the only such event on a major figure in the scientific revolution, it is beginning to attract some of the world’s top experts on this period of science (known as ‘early modern’). This year, the programme included talks by Lawrence Principe (Drew Professor of the Humanities at Johns Hopkins and author of The Scientific Revolution (OUP) and The Aspiring Adept: Robert Boyle and his Alchemical Quest); John Hedley Brooke (Professor Emeritus of Science and Religion and Oxford University , and author of Science and Religion: Some Historical Perspectives and Religious Values and the Rise of Science in Europe); and Terry Eagleton  (author of over forty books and Distinguished Professor of English literature at Lancaster University).

IMG_0912[1]

Lawrence Principe at Boyle 2014

IMG_0916[1]

John Hedley Brooke at Boyle 2014

It was the sort of conference I like best – a small number of inter-disciplinary talks aimed at curious academics and the public alike, with lots of time for questions and long breaks for discussion. On the last day, Boyle’s legacy was also celebrated by some talks concerning the science of today; we had a superb lecture on astrophysics from Professor Lorraine Hanlon of University College Dublin, and an outstanding seminar on inflammation and ageing by Professor  Luke O’ Neill, one of Ireland’s best known and most successful biochemists.  Other highlights were a lecture on fraud in modern science by Jim Malone, Emeritus Robert Boyle Professor of medical physics at Trinity College Dublin, and an open-air barbecue in Lismore Castle on Friday evening,including a re-enactment in costume of some famous Boyle experiments by Eoin Gill of WIT.

IMG_0920[1]

Eoin Gill aka Robert Boyle

dancers

Song and dance in the grounds of Lismore Castle

All in all, a superb conference in a beautiful setting.  The meeting was sponsored by Science Foundation Ireland, the Royal Society of Chemistry, the Institute of Chemisty (Ireland), the Institute of Physics (Ireland), the Robert Boyle Foundation,  i-scan, Abbott, Lismore Castle Arts and the Lismore House Hotel.

IMG_0927[1]

A late night music session with Luke O’ Neill  

 

Leave a comment

Filed under History and philosophy of science

Freeman Dyson and the Dublin Institute for Advanced Studies

On Monday, I attended the Statutory Lecture of the School of Theoretical Physics of the Dublin Institute for Advanced Studies (DIAS). This is an outreach lecture presented annually by DIAS and this year the lecture took place at University College Dublin. Better known abroad than at home, the Institute has a long and distinguished history of world-class research in fundamental areas of physics (see here), so it was entirely appropriate that the statutory lecture was given by Freeman Dyson, renowned physicist and Professor of Physics at the famous Institute for Advanced Study at Princeton, the college on which DIAS is modeled.

photo1

Freeman Dyson at the DIAS lecture on Monday night  

The title of Freeman’s lecture was  “Are Brains Analog or Digital?” and the abstract is below:

We know that creatures like us have two separate systems for processing information, the genome and the brain. We know that the genome is digital, and we can accurately transcribe our genomes onto digital machines. We cannot transcribe our brains, and the processing of information in our brains is still a great mystery. I will be talking about real brains and real people, asking a question that will have practical consequences when we are able to answer it. I am not able to answer it now. All I can do is to examine the evidence and explain why I consider it probable that the answer will be that brains are analog.

I won’t give more details as Professor Dyson will publish his paper on the subject quite soon. Suffice it to say that tickets for the lecture sold out days in advance and there was quite a buzz on the night. Freeman held the audience spellbound, reading from his paper without the benefit of a single slide.  One could gauge the interest generated from the huge number and variety of questions afterwards. That said, I couldn’t help noticing that the Irish media took no interest whatsoever in the occasion – one wonders if a world-famous  musician or celebrity chef would be similarly ignored.

photo2

Professor Dyson with staff from the School of Theoretical Physics at DIAS: Werner Nahm (Senior Professor and Director ), Arthur Jaffe (Professor of Mathematics at Harvard and Chairman of the board), Freeman Dyson, Vincent Cunnane (Chair of DIAS Council) and Cecil Keaveney (Registrar)

After the lecture, some of us retired to a nearby hotel where Professor Dyson and his wife regaled us with stories from his long and interesting career. Freeman was a close colleague of my late father and was instrumental in bringing Lochlainn and the rest of our family to the Institute for Advanced Study at Princeton many years ago (after this, Lochlainn returned to Ireland to take up a position at DIAS). So it was great to encounter Professor Dyson once again, this time as an adult! Not to mention that Freeman has fascinating and original views on a wide range of topics; from space travel to climate science, he remains a truly deep and original thinker.

Update

The day after the lecture, staff and friends of the Dublin Institute for Advanced Studies were treated to a private recital by the well-known Irish pianist Hugh Tinney. The connection is that Hugh’s late mother, Professor Sheila Tinney, was an accomplished mathematician who spent time at Princeton IAS and studied with Professor Dyson (Hugh himself studied maths at Trinity College Dublin before deciding on a career in music and was in the audience for Freeman’s lecture).

It was an extraordinary occasion. Hugh played beautifully and each piece was prefaced with a short discussion of the interface of mind, memory and music. The intimate setting made for one of the most exciting concerts I have experienced, far more fun than a formal venue such as the National Concert Hall. It didn’t hurt that the programme included three of my all-time favourite works, Beethoven’s ‘Moonlight’ Sonata,  Schubert’s G major Impromptu and *that* Nocturne by John Field (no.5 in B flat). The recital also had a special significance for me as it took place in the Organ Room of the Royal Irish Academy of Music, a venue I spent a great deal of time in as a young music student.

IMG_0837[1] IMG_0836[1]

Each piece was prefaced by a discussion of the role of mind in music

IMG_0838[1]

Hugh Tinney presenting his latest CD to Professor Dyson

After the recital, we retired to dinner in a nearby restaurant. As you can imagine, one subject of conversation was the mysterious connection between maths and music. I have heard one explanation for this strange phenomenon: “People who are good at maths are good at most things!”

P.S. A video of Freeman’s lecture is now available on the DIAS website.

4 Comments

Filed under Public lectures, Science and society

Hawking, Cambridge and the infant universe

I hugely enjoyed this week’s conference ‘Cosomolgy and the Constants of Nature’  at Cambridge University. There were some truly great talks by John BarrowJohn Ellis and Thanu Padmanabhan among others, not to mention Joao Magueijo describing his famous ‘variable speed of light’ theory in person. The icing on the cake was that my visit coincided with this week’s announcement of the detection of gravitational waves from the infant universe by the American BICEP2 experiment. If correct, the signal gives very significant experimental support for the theory of cosmic inflation, as well as the phenomenon of gravitational waves predicted by general relativity…..a double whammy if ever there was one.

Yesterday, I was priviliged to attend a seminar on the new results given by George Efstathiou and Anthony Challinor, team leaders on the rival Planck experiment (EU). There’s nothing like hearing a new observation dissected by a rival group and the seminar certainly didn’t disappoint. Both Cambridge physicists concluded that the BICEP 2 result is very robust, at least at face value, with the caveat that the signal needs to be reproduced at more than one frequency. The other caveat is that although the sensitivity of BICEP2 is up to ten times that of Planck,  there is a certain tension between the BICEP2 data and last year’s published data from Planck. I was particularly interested in Professor Efstathiou’s comment that the differing data of the two experiments may be a genuine effect, i.e., may represent some new physics at wide angles (Planck) that doesn’t affect the BICEP2 (small angle) measurements . The next few months should be very interesting indeed for cosmology…(see here for a rigorous discussion of the BICEP2 data by Peter Coles).

I had my own private excitement when I was introduced to Stephen Hawking for the first time. It was a very moving encounter, Professor Hawking remembered my father and his work. Stephen was also very interested in our recent discovery of Einstein’s unpublished attempt at a steady-state model of the cosmos. Indeed, his first remark to me was that steady-state cosmic models were the dominant cosmic paradigm when he started his research career at Cambridge all those years ago. He asked me to send him a copy of Einstein’s paper and I had a stressful evening trying to do so as my college email chose that day to block me for not changing my password often enough – of all days for that to happen!

IMG_0817

I can’t quite believe this photo

All in all, it was yet another hugely productive visit to Cambridge University. Every time I come here something dramatic happens but I’m also looking forward to going home, I could do with a rest!

IMG_0826[1]

Farewell to Clare college

Update

The American National Pubic Radio ran a piece on our Einstein discovery on today’s Morning Edition. I think it’s quite nice, apart from the usual emphasis on Einstein’s ‘blunders’ (why do journalists always see explorations as blunders?) Still, I’m learning not to be too precious about media stuff…

5 Comments

Filed under Cosmology (general)

Cosmology and the constants of nature at Cambridge

They say the Irish know how to party and the coincidence of yesterday’s victory in the Six Nations with a St Patrick’s weekend has brought the country to a whole new level of craziness. So it’s good to arrive in beautiful, tranquil Cambridge University for  a few day of quiet contemplation of the universe. It’s also good to get away from the hoopla generated by our recent discovery of an unpublished Einstein manuscript (see last post)…

IMG_0794[1]

Clare bridge this evening

I’m here for the conference ‘Cosmology and the Constants of Nature’, the next installment in the Cambridge/Oxford collaborative research project on the philosophy of cosmology (see here for an overview of the project).  Readers with a rudimentary knowledge of cosmology or particle physics will recognize the theme of this week’s meeting. Are ‘constants of nature’ such as the speed of light in vacuum or the gravitational constant truly constant? Or did they have different values in the early universe ? Are they truly independent of one another? Or are there hidden connections we are unaware of? Where do their values come from? The programme looks truly impressive, with talks by Martin ReesJohn Barrow, John Ellis, John Webb, Pedro Ferreira, Thanu Padmanabhan and Joao Magueijo. See here for the conference programme and overview.

I’m looking forward to Joao’s talk ‘Variations of c and other constants’. Joao made headlines a few years ago when he suggested that a speed of light in vacuum in the early universe very different to today’s value could give rise to many of the effects predicted by cosmic inflation. It looked like an intriguing alternative to inflation, although I haven’t heard much about the proposal recently. Joao also wrote a really nice book on the subject – in fact, it was one of the things that inspired me to persuade my boss to allow me to teach a course on the history of 20th century cosmology. It seems a while ago now, who would have guessed my little course would lead to the discovery of an unknown Einstein model of the universe ?

Right now, it’s time to stop musing and catch up on the world with the ten o’ clock news. Except wait, I don’t have a tv! I’m back in Clare College, my favourite of all the Cambridge colleges. There’s no tv, but on the other hand there’s something about working away in an unpretentious student room overlooking the beautiful quad that I find very relaxing. A perfect place for a bit of thinking…or maybe write a murder mystery…

welcome_to_clare

Clare College – a good place for some quiet thinking

Update

Some truly great talks by , John BarrowJohn Ellis, and Martin Rees among others so far at the conference, but the big news is yesterday’s announcement  of the observation of B-mode polarization in the cosmic microwave background by the BICEP2 experiment. If correct, the signal is strong evidence of gravitational waves emanating from the inflationary epoch of the infant universe. A huge boost for the notion of cosmic inflation, not to mention strong empirical evidence for the phenomenon of gravitational waves predicted by general relativity…..a double whammy if ever there was one. I won’t say more on this as several cosmologists here at Cambridge who are team leaders on the European PLANCK experiment will give an impromptu seminar on the US results tomorrow. I’d best change my flight – every time I come to Cambridge something dramatic like this happens…

4 Comments

Filed under Cosmology (general), History and philosophy of science

Einstein’s unfinished symphony in the media

Our recent discovery of an unpublished model of the cosmos by Albert Einstein (see last post or here for a preprint of our paper) is receiving a lot of media attention, it’s very humbling. First off the mark was Davide Castelvecchi with a very nice article in Nature. Davide’s article was quickly reproduced in various outlets, from Scientific American here to the Huffington Post here. Trawling over the internet, I see newspaper and magazine articles describing our discovery in a dozen languages. It’s nice to see historical material receiving this sort of attention, I guess everyone loves an Einstein story.

einsteinjpgjpg-4a389e85f92a0547

I’m also intrigued that it was the traditional media that picked up the story – with the exception of Peter Woit, no-one in the blogosphere seemed to notice our preprint or even a blogpost I wrote describing our paper. Perhaps we bloggers need the imprimateur of respected print journals more than we care to admit!

I notice one slightly misleading point in the electronic version of the Nature article is getting repeated everywhere. It’s probably not quite correct to frame Einstein’s attempt at a steady-state model of the cosmos in terms of a resistance to ‘big bang’ theories; there is no reference to the problem of origins in Einstein’s manuscript. Indeed, one of the most interesting aspects of the manuscript is that it appears to have been written in early 1931, at a time when the first tentative astronomical evidence for an expanding universe was emerging but the issue of an explosive beginning for the cosmos had yet to come into focus (e.g. the great debate between Eddington and Lemaitre later in 1931). It’s interesting that the initial mention in Nature of resistance to ‘big bang’ theories  is repeated in almost all other outlets, one can’t help wondering how many science journalists read our abstract. An honorable exception here is John Farrell at Forbes Magazine. John certainly noticed the discrepancy and no wonder – John has written an excellent book on Lemaitre.

index

All in all, it’s been a lot of fun so far. I’m getting quite a few emails from distinguished colleagues pointing out that Einstein’s model is trivial because it didn’t work, which is of course true. However, our view is that what Einstein is trying to do is very interesting from a philosophical point of view  – and what is even more interesting is that he apparently abandoned the project when he realised that a consistent steady-state model would require an amendment to the field equations. In short, it seems the Great Master conducted an internal debate between steady-state and evolving models of the cosmos decades before the rest of the community…

Update

There is a very nice video describing our discovery here.

12 Comments

Filed under Astronomy, Cosmology (general), History and philosophy of science

Einstein’s exploration of a steady-state model of the universe

Some research news:

Last summer, in the course of our research into the Friedman-Einstein model of the cosmos (see this post or here for the article), I came across an unpublished manuscript by Einstein in which he explored a ‘steady-state’ model of the universe, i.e.,  a model of the universe in which space expands but the density of matter remains constant due to a continuous creation of matter from the vacuum. Such a model is radically different to previously known Einsteinian models of the universe, from his static model of 1917 to the evolving models he proposed in 1931 and 1932 in the wake of Hubble’s observations of the recession of the galaxies.  On the other hand, it bears some similarities to the famous  steady-state cosmic theories proposed by Hoyle, Bondi and Gold in 1948.

When was Einstein’s steady-state model written?

Several aspects of the manuscript suggest it was written in early 1931, after Hubble’s observation of the recession of the galaxies but before Einstein’s evolving models of 1931 and 1932. So it could be said that Einstein anticipated the general idea of steady-state models of the universe by almost twenty years!

einstein-cosmological-constant-1

Einstein giving a lecture at Caltech in 1931.His attempt at a steady-state model 
was probably penned during his stay in the USA in early 1931

A discarded model

Why was Einstein’s steady-state model never published? The bad news is that the model doesn’t work, i.e., it contains a fundamental flaw that leads to a null solution, i.e., a universe empty of matter. It only looked like a viable theory because Einstein made a mistake in his analysis. There is evidence in the manuscript that Einstein spotted the problem on revision and this is almost certainly the reason he declined to publish the manuscript. So it’s a failed model. That said,  it is very interesting that Einstein didn’t anticipate that the particular approach model he used (a variation of the de Sitter model) would lead to a null solution, and even more interesting that when the problem became apparent, he declined to try again with a more sophisticated version. We see this as an important crossroads – it seems that on realising that a successful steady-state model would require amending the field equations of relativity, Einstein plumped instead for evolving models.

Who cares?

It could be argued that steady-state models are of little interest today because observations have shown unequivocally that we live in an evolving universe  (not to mention the fact that Einstein’s version didn’t work). All of this is true, but what Einstein is attempting to do is of great interest; the standard narrative that Einstein eagerly embraced evolving models of the cosmos on learning of  Hubble’s results because they allowed him to drop the cosmological constan, no longer seems entirely accurate. In his attempt at a steady-state model in the manuscript, Einstein retains the cosmological constant and even loosely associates it with the creation of matter from the vacuum. Most interesting of all, it seems that Einstein conducted an internal debate between steady-state and evolving models of the universe decades before a similar debate took place in the wider cosmological community.

Why was the theory not found before?

The manuscript was never published and was archived in the Albert Einstein Archives as a draft of something else, Einstein’s published 1931 model of the cosmos (also known as the Friedman-Einstein model). It was while researching materials relevant to the latter paper that we discovered the model (I nearly fell off my chair).  This sort of thing happens all the time in historical research – for example, we  also discovered a number of numerical errors  in the Friedman-Einstein model that no-one seems to have noticed before.

Where to find more on this

We have submitted a paper containing a transcription, translation and analysis of Einstein’s manuscript to the European Physical Journal (H) by kind permission of the Einstein Papers Project and the Hebrew University of Jerusalem. A preprint of the paper can be found on the physics ArXiv at http://arxiv.org/abs/1402.0132

Update

Nature have a news article on our discovery here. It’s a nice article although the writer has confused Einstein’s reservations concerning a dynamic universe with his reservations concerning Lemaitre’s theory of origins (those come later). One of the most interesting aspects of the manuscript is that it seems to predate discussions of the issue of an origin for the cosmos. It’s interesting that Davide’s  error is repeated in outlets such as  Scientific American here and the Huffington Post here! There is a very nice video describing our discovery here

2 Comments

Filed under Cosmology (general), History and philosophy of science

Paradigm shift or slow dawning?

I have an article in The Irish Times today concerning the view of scientific progress articulated by Thomas Kuhn. The main point I try to make is that Kuhn’s famous idea of the paradigm shift in science  is much more popular with non-scientists than with the boffins themselves. Not because “Well, they would think that, wouldn’t they?” (Thank you, Christine), but because many of the examples cited by Kuhn in his influential book dated from antiquity rather than from modern science.

In particular, those scientists who read Kuhn notice that he paid very little attention to the manner in which false data tends to be quickly exposed by rival experimentalists, or to the way modern theorists tend to consider data in the context of all possible models. Most importantly, scientists studying the history of their own area typically find that scientific ‘revolutions’ tend to occur as extremely slow processes of discovery and acceptance – more a slow dawning than a paradigm shift. Indeed, they are really only paradigm shifts in retrospect.

260px-Thomas_Kuhn

Thomas Kuhn, author of The Structure of Scientific Revolutions

You can read the Irish Times article here, and I have an older post on Kuhn from my Harvard days here (there is also a good discussion below that post).

Leave a comment

Filed under History and philosophy of science

Einstein’s smallest blunder

At 17.45 GMT today, I carried out the final fuel checks on our Einstein paper, took a deep breath and hit launch (okay SUBMIT).

Over the summer, I came across quite a few references to a paper Einstein wrote on cosmology in early 1931, in the wake of Hubble’s first observations of the expanding universe (Ahemperhaps you mean  in the wake of Hubble’s observation of an apparent linear relation between the recession of the spiral nebulae and their distance, an empirical result that some theorists interpreted as evidence of an expanding universe – Ed ).

Like many Einstein papers, this paper is written in German, but unlike most Einstein papers  I could not find an English translation anywhere – pretty strange, given that this is Einstein’s first official  publication in the light of the new astronomical results (and given that he wrote very few papers on cosmology). So, with permission from the Einstein Archives, I spent the summer translating the paper with a colleague and adding hysterical remarks. Sorry, historical remarks. It was a most enjoyable project, with a few surprises along the way:

(i) Einstein’s 1931 paper offers a lot of interesting insights into his thoughts on the first tentative evidence for an expanding universe, but it does not say what a lot of science historians seem to think it says

(ii) Some calculations, where Einstein estimates values for the radius of the universe and the density of matter using Hubble’s results, seem to contain a fairly obvious numerical error

(iii) The same error can be seen in writing on a blackboard preserved from a lecture Einstein gave on the paper at Oxford University in 1931

29wtpast1

Einstein in Oxford – nice to know we all make mistakes

There has already been quite a bit of interest in our article, it seems your humble correspondent may have gotten lucky for once. Or we  might be wrong, in which case we’re going to look very silly. In the meantime, it looks like I’ll be doing a bit of traveling this year….

Update (Jan 2014)

Our article has now been published in the European Physical Journal (History). You can find the article here or a preprint on the Physics Arxiv here.

Update (Jan 2014)

Our article made the cover of EPJ!

EPJ cover

8 Comments

Filed under Cosmology (general)

Last day at COSMO13 in Cambridge

Today was the last day of the COSMO13 conference, a most enjoyable, if sometimes exhausting conference – so many seminars, not to mention a banquet in Trinity College last night.

Image

The conference finished this morning with lectures on dark energy from Ofer Lahav and Edmund  Copeland, on dark energy and modified gravity by Lam Hui and Claudia de Rahm, and on inflation by Richard Easther. The conference website is here and videos of the presentations will be available here in the next few days.

UPDATE: Videos of the plenary talks and pdfs of talks from the parallel sessions are  now available here.

If I had to summarize the conference in one sentence, I think the take-home message is that recent experimental results in both cosmology (from the PLANCK satellite) and particle physics (from the LHC) are strongly supportive of our basic models, giving strong confidence that our underlying theories are on the right track. The downside is that in each case, the fit is a teeny bit too good for comfort. There is a slightly worrying lack of evidence for physics beyond the standard models so far – a lack of evidence for supersymmetric particles at the LHC (although a low-mass Higgs is in principle good news for SUSY) and a lack of non-Gaussianities and parity violation in the PLANCK measurements of the cosmic microwave background. But the future is bright, especially considering the projected increases in luminosity at the LHC and the possible detection of B-mode polarization in the CMB by PLANCK.

That said, I agree heartily with Ofer Lahav’s comment that it is extraordinary to be living through a paradigm shift in cosmology, namely the discovery of the accelerated expansion (two paradigm shifts if you include inflation). Added to which we are now in an era of precision cosmology. Indeed, measurements of the cosmic microwave background by PLANCK are now reaching such a level of precision that it isn’t always meaningful to talk about agreement or tension with astrophysical measurements – the latter have quite a lot of catching up to according to George Efstathiou!

On a personal note, it’s extraordinary to see Dad’s work on supersymmetry reaching a whole new audience in cosmology, as supersymmetry breaking in the early universe  becomes a major area of research. I can’t tell you how many young researchers eyed my badge in astonishment and then started to quizz me about O’Raifeartaigh models!

Now the conference has finally ended, it’s nice to get back to work on my paper on Einstein’s cosmology in the 1930s – some of the talks here have given me some new ideas. I managed to finish most of the paper here, I’ll always think of it as my Cambridge paper!

Image

Leave a comment

Filed under Cosmology (general)

Gruber prize at Cambridge

There was some excitement at the COSMO 2013 conference at Cambridge yesterday evening, with the presentation of this year’s Gruber prize for cosmology. The prize went to Viatcheslav Mukhanov and Alexei Starobinsky, two Russian theoreticians who made legendary contributions to our understanding of the formation of structure in the early universe.  After a very nice ceremony, we got a superb seminar from each; Starobinksy gave a talk on ‘Quantum Beginning of the Universe’, while Muhkanov gave a moving and often hilarious account of a scientist’s life in the old Soviet Union .

IMG_0659[1]

Mukhanov (L) and Starobinsky (R) accepting the Gruber prize

During the day, we had many seminars on the cosmic microwave background, notably by George Efstathiou and Jo Dunkley, and a talk by John Kovac on attempts to detect B-mode polarization in the CMB from ground-based telescopes. You can see the conference programme here. The Gruber ceremony was followed by a reception, so I didn’t get home until 10 pm.  All in all, a pretty full day.

Today, the talks are on large scale structure in the universe and quite a bit more technical (at least for your humble correspondent). On the other hand, there is quite a frisson in the room as Stephen Hawking has just arrived to catch Andreas Ringwald’s talk on axions. This evening, Professor Hawking and Brian Cox will each give a public talk as part of the conference, I’m looking forward to it.

Update

We had three public lectures this evening. Andrew Liddle on cosmology and the Planck results, Brian Cox on the LHC and the Higgs boson, and Stephen Hawking on space and time or  ‘Fire in the Equations’. Andrew gave his usual tour de force (see here for a review of his recent Dublin lecture), Brian gave a surprisingly mathematical lecture on the standard Model of particle physics, and Stephen stole the show with a truly inspirational lecture on space, time, the meaning of it all and why scientists need to stay curious. Just the thing for a jaded conference delegate with a paper to finish before he goes home!

IMG_0662[1]

Brian Cox in action

IMG_0672[1]

Stephen Hawking musing on the meaning of the universe

1 Comment

Filed under Cosmology (general)