Introductory physics: heat transfer

One the great surprises about heat energy is that the transfer of heat can occur by any or all of three very different mechanisms.

In conduction, heat transfer occurs by a process of molecular collision. If you heat up one end of a bar of iron, the energy is transferred from the hot end to the cold by atoms or molecules bumping into one another i.e. while there is a net drift of energy from hot to cold, the molecules do not change their respective positions. This is the primary method of heat transfer in solids and it works best of all in metals (because loosely bound electrons play a role).  It is also an efficient method of conduction in liquids, but occurs hardly at all in gases. In gases, a low density of atoms or molecules inhibits conduction very effectively – hence air is an excellent insulator.

This fact is used to good effect in double glazing; a layer of air between two panes of glass allows one to have good light and views in a house without too much heat loss. Similarily, modern mountaineers keep warm by wearing many thin layers as the air trapped between each set of layers acts as an effective insulator.

Conduction in a solid: the molecules do not change position much

Heat transfer can also occur by the process of convection. In this case, heat energy is transferred by a movement of molecules. The classic example is hot air rising: on a hot day, air close to ground absorbs heat from the earth’s  surface, expands, and rises because it has become less dense than other air. Cooler and denser air then rushes down from above to fill its place, only to be heated in turn and a cycle is set up. As you might expect, this an important method of heat transfer in gases, and convection currents are responsible for everything from sea breezes at shore to major wind patterns around the globe.

Sea breeze close to shore on a hot day

Convection also occurs in liquids: indeed, convection currents are of great importance in the oceans of the world. For example, the seas around Ireland are warmer than might be expected for our latitude. This warming is a result of the famous North Atlantic Drift, a huge ocean current that is part of a giant conveyor belt that delivers heat from the seas off South America all the way up to the seas near Greenland. One of the concerns of global warming is that as the ice caps melt, this current may weaken or even shut down: in which case Ireland and Britain could become very cold indeed!

The North Atlanic Drift keeps Ireland’s climate mild

What is the third process of heat transfer? Well, that is a different story altogether…

3 Comments

Filed under Introductory physics, Teaching

3 responses to “Introductory physics: heat transfer

  1. I like this one, too. My girlfriend’s son was learning about convection in school last week – I’ll show him your blog entry so that he can reinforce and extend his knowledge. Your idea of a series on freshman physics is great, and I hope you will be able to carry it through!

  2. Many thanks Micheal – it’s proving hard to keep up with lectures, but I’ll do my best!

  3. Ashley

    Thank you! This helped me with my study for the end of year science post test.